If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.0014x+-0.0000722400=0
We add all the numbers together, and all the variables
x^2+0.0014x=0
a = 1; b = 0.0014; c = 0;
Δ = b2-4ac
Δ = 0.00142-4·1·0
Δ = 1.96E-6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.0014)-\sqrt{1.96E-6}}{2*1}=\frac{-0.0014-\sqrt{1.96E-6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.0014)+\sqrt{1.96E-6}}{2*1}=\frac{-0.0014+\sqrt{1.96E-6}}{2} $
| 8h-11=4h+1 | | 15+8n+3n−2−13= | | x+(5x-4)+4x=180 | | 7g-3g+6=41 | | x^2+20x+90=-9 | | -3c=9-2c | | -4(6a+5)=-92 | | 13.8g-5.72=13.1g-18.6 | | –3c=9−2c | | -2.46=c/2 | | 6j=4^2-2j | | -4f-5=5f+13 | | 6j=4 | | 60=6(6+x) | | –9n−4=–10n−10 | | 6.25.3=s+6.2 | | u/3=2.74 | | 15+20p-7=-7+17p | | 8(4)^(3x)=40 | | 2y+2y=19+5 | | v/30=-14 | | 2(3.14)(3x+1)=74.5 | | 21x+136=180 | | 3x^2-14x-18=3 | | –20y=–19y+7 | | |x+1|-1=|2x-3| | | 9e=6 | | 2(30)=6(6+x) | | -4=k+2/3 | | b+499=-318 | | 2y+17=4y-9 | | -3(t=6)=0 |